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1 Vector spaces

Definition Vector space

Consider a field F of scalars and a set V with elements called vectors.
We define two operations on V :

• ⊕ : V × V → V Vector addition
• ⊙ : F× V → V Scalar multiplication

V is a vector space over F if and only if these axioms hold:
1. There exists an element 0 (the zero vector) in V such that 0⊕ u = u for all u ∈ V .
2. Vector addition is commutative: u⊕ v = v ⊕ u
3. Vector addition is associative: u⊕ (v ⊕ w) = (u⊕ v)⊕ w
4. For each u ∈ V , there exists z ∈ V (the additive inverse) such that u⊕ z = 0
5. For all u ∈ V , 1⊙ u = u
6. For all a, b ∈ F and all u ∈ V , a⊙ (b⊙ u) = (ab)⊙ u
7. For all c ∈ F and all u, v ∈ V , c⊙ (u⊕ v) = (c⊙ u)⊕ (c⊙ v)
8. For all a, b ∈ F and all u ∈ V , (a+ b)⊙ u = (a⊙ u)⊕ (b⊙ u)

Theorem

Let V be a vector space and let u ∈ V . Then,
1. The zero vector 0 is unique.
2. 0⊙ u = 0
3. The additive inverse z of u is unique.
4. −1⊙ u = z

Alternative notation:
additive inverse −u zero vector 0 vector addition u+ v scalar multiplication cu

Definition Subspace

Let V be a vector space over F . U ⊆ V is a subspace of V if
U is a vector space over F with the same vector addition and scalar multiplication operations as V .

Only axioms 1 and 4 have to be checked to see if U is a subspace.

Theorem

Let V be a vector space over F and U ⊆ V . Then U is a subspace of V if and only if:
1. U is nonempty
2. u+ v ∈ U for all u, v ∈ U
3. cu ∈ U for all c ∈ F and u ∈ U

1.1 Linear combinations

Definition Linear combination

Let V be a vector space over F.
For given c1, c2, . . . , c2 ∈ F and v1, v2 . . . , vr ∈ V , we say that an expression of the form c1v1 + c2v2 +
. . .+ crvr is a linear combination of v1, v2 . . . , vr.

Definition Span

The set of all linear combinations of v1, v2, . . . , vr ∈ V is called the span of v1, v2, . . . , vr.
We denote it by span(v1, v2 . . . , vr) = {c1v1 + c2v2 + . . .+ crvr | c1, c2 . . . , cr ∈ F}

Theorem

Let V be a vector space and v1, v2, . . . , vr ∈ V . Then span(v1, v2, . . . , vr) is a subspace of V .

Definition Spanning set

We say that v1, v2, . . . , vr is a spanning set for V (or v1, v2, . . . , vr span V )
if every vector in V can be written as a linear combination of v1, v2, . . . , vr.
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Theorem

1. If v1, v2, . . . , vr span V and one of these vectors is a linear combination of the others,
then these r − 1 vectors span V .

2. One of the vectors v1, v2, . . . , vr is a linear combination of the others if and only if
there exist scalars c1, c2, . . . , cr ∈ F, not all zero, such that c1v1 + c2v2 + . . .+ crvr = 0

Definition Linear dependence and independence

The vectors v1, v2, . . . , vr are linearly dependent if there exist scalars c1, c2, . . . , cr ∈ F,
not all zero, such that c1v1 + c2v2 + . . .+ crvr = 0. Otherwise, they are linearly independent.

Theorem

Let v1, v2, . . . , vr ∈ V be vectors. Every vector in span(v1, v2, . . . , vr) can be written uniquely
as a linear combination of v1, v2, . . . , vr if and only if v1, v2, . . . , vr are linearly independent.

1.2 Subspace operations

Theorem

If U,W are subspaces of a vector space V , then U ∩W is a subspace of V .

This is not necessarily true for U ∪W .

Definition Sum of subspaces

The sum of two subspaces U and W of V is defined as U +W = {u+ w | u ∈ U and w ∈ W}

Theorem

If U,W are subspaces of a vector space V , then U +W is a subspace of V .

Definition Direct sum of subspaces

The sum of two subspaces U,W is called a direct sum if U ∩W = 0

Every vector in a direct sum U +W can be uniquely expressed as a sum of u ∈ U and w ∈ W .

1.3 Bases

Definition Basis

Let V be a vector space over F . The vectors v1, v2, . . . , vn form a basis of V if
1. v1, v2, . . . , vn are linearly independent
2. span(v1, v2, . . . , vn) = V

Bases are not unique.

Lemma Replacement lemma

Let V be a nonzero vector space over F and let r be a positive integer.

Suppose that u1, u2, . . . , ur span V . Let v =
r∑

i=1

ciui be a nonzero vector in V . Then,

1. cj ̸= 0 for some j ∈ {1, 2, . . . , r}.
2. If cj ̸= 0 then v, u1, . . . , uj−1, uj+1 . . . , ur span V .
3. If {u1, u2, . . . , ur} is a basis for V then {v, u1, . . . , uj−1, uj+1 . . . , ur} is also a basis for V .

Theorem

Let n and r be positive integers and let V be a vector space over F .
Let {v1, v2, . . . , vn} be a basis of V and let u1, u2, . . . , ur be linearly independent. Then,

1. r ≤ n
2. If r = n, then {u1, u2, . . . , ur} is a basis of V .

Theorem

If {v1, v2, . . . , vn} and {u1, u2, . . . , ur} are bases of V , then n = r.
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Definition Dimension

Let V be a vector space and let n be a positive integer.
• If {v1, v2, . . . , vn} is a basis of v, then n is the dimension of V .
• If V = {0}, then V has dimension zero.
• If V has dimension n for some n ∈ N, then V is finite dimensional (notation: dimV = n)
• Otherwise, V is infinite dimensional.

If span(v1, v2, . . . , vr) = V , then dimV ≤ r

If V is finite dimensional, every set of linearly independent vectors in V can be extended to a basis.

If V is finite dimensional and U is a subspace of V , then dimU ≤ dimV .

The set of sequences in R is an example of an infinite-dimensional vector space.

Theorem Grassman’s formula

dim(U ∩W ) + dim(U +W ) = dimU + dimW

1.4 Linear transformations

Definition Linear transformation

Let V and W be vector spaces over the same field F.
A function T : V → W is called a linear transformation (a linear operator if V = W ) if

T (au+ bv) = aT (u) + bT (v) ∀a, b ∈ F ∀u, v ∈ V

Let A ∈ Fn×m and T (x) = Ax. Then T is a linear transformation from Fm to Fn.

Derivatives and integrals are linear transformations.

Lemma

Let V and W be vector spaces over F and let T : V → W be a linear transformation. Then,
1. T (cv) = cT (v) for all c ∈ F and v ∈ V
2. T (0) = 0 (the first 0 is in V , the second 0 is in W )
3. T (a1v1 + a2v2 + . . .+ anvn) = a1T (v1) + a2T (v2) + . . .+ anT (vn) ∀vk ∈ V ∀ak ∈ F

Definition Kernel and range

Let T : V → W be a linear transformation.
• The kernel of T is defined as kerT = {v ∈ V |T (v) = 0}
• The range of T is defined as ranT = {w ∈ W | ∃v ∈ V s.t. T (v) = w}

Theorem

The kernel of T is a subspace of V and the range of T is a subspace of W .

Any element of an n-dimensional vector space can be represented by the
E-coordinate vector ⟨c1, c2, . . . , cn⟩ ∈ Fn by fixing an ordered basis E.

Definition E-basis representation

Let E = (v1, v2, . . . , vn) be an ordered basis of V .
For any u ∈ V , write u = c1v1 + c2v2 + . . .+ cnvn where ck ∈ F.
The function [ · ]E : V → Fn, defined by [u]E = ⟨c1, c2, . . . , cn⟩ is called the E-basis representation.

Theorem

[ · ]E : V → Fn is a linear transformation.
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Theorem Isomorphism V and Fn

[ · ]E is a bijection between V and Fn.
We say that [ · ]E : V → Fn is a (linear) isomorphism and V and Fn are isomorphic.

Theorem Dimension theorem

Let T : V → W be a linear transformation. Then dimker(T ) + dim ran(T ) = dimV

The range of a matrix is equal to the span of its columns.

Lemma

Let T : V → W be a linear map. Then ker(T ) = {0} if and only if T is injective.

Lemma

Let T : V → W be a linear map with dimV = dimW < ∞. Then T is injective ⇐⇒ T is surjective.

1.5 Matrix representations

Definition Matrix representation of a linear transformation

Let V be a n-dimensional vector space over F with basis β and linear transformation β.
Then the matrix representation with respect to β is the matrix β [T ]β
where each column is a vector of the basis with T applied to it.

Every n-dimensional vector space (mapped to Fn) has the standard basis



1
0
...
0

 ,


0
1
...
0

 , . . . ,


0
0
...
1




Definition Change of basis matrix

The change of basis matrix from β to γ is the n× n matrix β [I]γ
whose columns are the elements of β expressed in γ.

Theorem

Let V be a finite dimensional vector space with bases β, γ and linear transformation T .
Let S =γ [I]β . Then β [I]γ = S−1 and γ [T ]γ = S β [T ]β S

−1

Definition Similarity

Two matrices A and B are similar if and only if A = Q−1BQ for some Q.

2 Inner product spaces

Definition Inner product space over R
An inner product space over R is an R-vectorspace V together with a map

V × V → R : (v1, v2) 7→ ⟨v1, v2⟩

This map satisfies the axioms of an inner product:
1. Linearity For any fixed v2, the map V → R : v ∈ V 7→ ⟨v, v2⟩ is linear.
2. Symmetry ⟨v1, v2⟩ = ⟨v2, v1⟩ for all v1, v2 ∈ V
3. Positivity ⟨v, v⟩ ≥ 0 and if v ̸= 0, ⟨v, v⟩ > 0
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Definition Hermitian inner product space (Inner product space over C)
An inner product space over C is a C-vectorspace V together with a map

V × V → C : (v1, v2) 7→ ⟨v1, v2⟩

This map satisfies the following axioms:
1. Linearity For any fixed v2, the map V → C : v ∈ V 7→ ⟨v, v2⟩ is linear.

The map is not necessarily linear if v1 is fixed instead of v2.
2. Symmetry ⟨v1, v2⟩ = ⟨v2, v1⟩ for all v1, v2 ∈ V
3. Positivity ⟨v, v⟩ ∈ R and if v ̸= 0, ⟨v, v⟩ > 0

Notation: v1 ⊥ v2 means that v1 and v2 have inner product 0.

The standard inner product for Cn is

a1...
an

 ·

b1...
bn

 =

n∑
j=1

ajbj

2.1 Norms

Definition Norm

Let V be an F-vectorspace.
A vector-space norm on V is a map ∥ · ∥ : V → R where ∥v∥ is the norm of v ∈ V .
This map has to satisfy the following conditions for all v ∈ V :

1. Non-negativity ∥v∥ ≥ 0
2. Positivity ∥v∥ = 0 ⇐⇒ v = 0
3. Homogeneity ∥λv∥ = |λ| · ∥v∥ ∀λ ∈ F
4. Triangle inequality ∥v + w∥ ≤ ∥v∥+ ∥w∥

Theorem

Let V be an inner product space. Then we can define a norm as ∥v∥ =
√

⟨v, v⟩

Theorem Cauchy-Schwarz-Bunyakovsky inequality

|⟨v, w⟩| ≤ ∥v∥ · ∥w∥

2.2 Orthonormal vectors

Definition Orthogonal system

An orthogonal system in a vector space V is a set of n vectors v1, . . . , vn ∈ V
such that ⟨vi, vj⟩ = 0 if and only if i ̸= j

Definition Orthonormal system

An orthonormal system in a vector space V is a set of n vectors v1, . . . , vn ∈ V

such that ⟨vi, vj⟩ =

{
1 if and only if i = j

0 if and only if i ̸= j

Lemma

The vectors in any orthogonal system form an independent set.

Definition Orthonormal basis

We call {vi}i∈I ⊆ V an orthonormal basis iff {vi}i∈I is an orthonormal system that spans V .

Theorem

Let {vi}i∈I be a basis of V . Take any vector v ∈ V , which can be written uniquely as ai1vi1 + . . .+aimvim

Then ⟨v, vj⟩ =

{
aj if j ∈ {i1, . . . , im}
0 otherwise.
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Algorithm Gram-Schmidt process

Let dimV < ∞. Let v1, v2, . . . , vn be a basis of V .

Define the vectors u1, u2, . . . , un recursively by u1 =
v1

||v1||
and uk =

xk

||xk||
where xk = vk −

k−1∑
i=1

⟨uivk⟩ui for all k ≤ n.

Then, {u1, u2, . . . , un} is an orthonormal basis of V .

2.3 Dual vector spaces

Definition Dual vector space

L(V,W ) is the set of linear maps from V to W .
Let V be an F-vectorspace. The dual vector space of V is denoted V ∗ or L(V,F).
The elements of V ∗ are called functionals.

Let V,W be an F-vectorspace. Then L(V,W ) is also an F-vectorspace.

If V = Fn, then V ∗ = F1×n.

Inner products of R-vectorspaces are functionals.

Theorem

If V has dimV = n < ∞, then V ∗ ∼= V (∼= means isomorphic)
Any basis for V yields such an isomorphism.

Theorem Riesz representation theorem

If dimV < ∞, then the map V → V ∗ is bijective.

Definition Adjoint

Let T ∈ L(W,V ). Then T ∗ (or T adj) is a function such that ⟨⟨T ∗(·), v ∈ V ⟩⟩ = ⟨ · , T ∗(v)⟩
T ∗ is a linear map from V to W .

T ∗ is the conjugate transpose of T .

Definition Self-adjoint

A linear transformation is self-adjoint or Hermitian if T ∗ = T

2.4 Orthogonal complements

Definition Orthogonal complement

Let V be an inner product space and W ⊆ V . Then W⊥ := {v ∈ V : ⟨v, w⟩ = 0 ∀w ∈ W}

If W is a subspace of V , then W⊥ is a subspace of V .

V ⊥ ∩ V = {0}

Theorem

If V is finite-dimensional, then (V ⊥)⊥ = V . Otherwise, V ⊆ (V ⊥)⊥.

Theorem

If V is finite-dimensional and W ⊆ V , then dimW + dimW⊥ = dimV .

Theorem

If U is a finite-dimensional subspace of V , then V is the direct sum of U and U⊥.
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Definition Orthogonal projection

Let V ⊆ W . Every w ∈ W can be written uniquely as v ∈ V + v′ ∈ V ⊥

where v is the orthogonal projection of w. (notation: Pvw)

Theorem

kerT = (imageT ∗)⊥

Theorem Minimum norm solution

Let V1, V2 be inner product spaces and T : V1 → V2 F-linear.
Let b ∈ V2. The set of solutions to T (x) = b is {x ∈ V1 | T (x) = b} = {a+ v | a ∈ V1, v ∈ ker(T )}
If we solve T ◦ T ∗(x) = b, then T ∗(x) is the minimum norm solution to T (x) = b.

Theorem

If v1, . . . , vn is an orthonormal basis for U , then Pu(v) = ⟨v, v1⟩v1 + ⟨v, v2⟩v2 + . . .+ ⟨v, vn⟩vn

Theorem

Let V be a finite-dimensional vectorspace. Let T be a linear operator. Then

T is an orthogonal projection ⇐⇒ T is idempotent and self-adjoint

Theorem

Let U = span{u1, u2, . . . , un} be a finite-dimensional subspace of an inner product space V . Let v ∈ V .

Then Puv =
n∑

j=1

cjuj where [c1 c2 . . . cn]T ∈ Fn is a solution to the normal equation:


⟨u1, u1⟩ ⟨u1, u2⟩ · · · ⟨u1, un⟩
⟨u2, u1⟩ ⟨u2, u2⟩ · · · ⟨u2, un⟩

...
...

. . .
...

⟨un, u1⟩ ⟨un, u2⟩ · · · ⟨un, un⟩



c1
c2
...
cn

 =


⟨v, u1⟩
⟨v, u2⟩

...
⟨v, un⟩



Theorem Best approximation theorem

Let U be a finite-dimensional subspace of an inner product space V .
Then ∥v − Puv∥ ≤ ∥v − w∥ ∀w ∈ U with equality if and only if Puv = w

2.5 Definite matrices

Definition Definite matrix

Define the inner product as the standard inner product in Fn. Let A ∈ Fn × n be a Hermitian matrix.
We say that A is:

1. positive semidefinite if ⟨Ax, x⟩ ≥ 0 ∀x ∈ Fn

2. positive definite if ⟨Ax, x⟩ > 0 for all nonzero x ∈ Fn

3. negative semidefinite if ⟨Ax, x⟩ ≤ 0 ∀x ∈ Fn

4. negative definite if ⟨Ax, x⟩ < 0 for all nonzero x ∈ Fn

5. indefinite if ⟨Ax, x⟩ takes both positive and negative values.
Notation: A ≥ 0, A > 0, A ≤ 0, A < 0

Theorem

Let A ∈ Fn be a Hermitian matrix with eigenvalues λ1, λ2, . . . , λn ∈ R We have that:
1. A ≥ 0 if and only if λi ≥ 0 ∀i ∈ {1, 2, . . . , n}
2. A > 0 if and only if λi > 0 ∀i ∈ {1, 2, . . . , n}
3. A ≤ 0 if and only if λi ≤ 0 ∀i ∈ {1, 2, . . . , n}
4. A < 0 if and only if λi < 0 ∀i ∈ {1, 2, . . . , n}
5. A is indefinite if and only if λi > 0 and λj < 0 for some i, j ∈ {1, 2, . . . , n}
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Lemma

• A is positive semidefinite if and only if there exists a B ∈ Fn×n such that A = B∗B
• A is positive definite if and only if there exists a nonsingular B such that A = B∗B
• A ≤ 0 ⇐⇒ −A ≥ 0
• If A is positive semidefinite, then ⟨Ax, x⟩ = 0 =⇒ Ax = 0
• A > 0 =⇒ detA > 0

Definition Square root of a matrix

If A = B2, then B is the square root of A.

Some matrices have many square roots. Not every matrix has a square root.

Theorem

Let A ∈ Fn×n be positive semidefinite. Then A has a unique positive semidefinite square root.

Theorem Cholesky factorization

Let F ∈ Fn×n be a positive semidefinite matrix.
There exists a lower triangular matrix L ∈ Fn×n with real nonnegative diagonal entries such that P = LL∗

Lemma QR factorization

Let A ∈ Fn×n.
There exists a unitary Q and upper triangular R with real nonnegative diagonal entries such that A = QR

2.6 Singular value decomposition

Definition Rank deficient matrix

Let a ∈ Rm×n be a real matrix with m ≥ n. A is called rank deficient if rankA < n.

Theorem Singular value decomposition (tall matrices)

Let A ∈ Rm×n with m ≥ n
There exist two orthogonal matrices U ∈ Rm×m and V ∈ Rn×n and real numbers σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0
such that A = UΣV T , where

Σ =



σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σn

O


and O is a (m− n)× n zero matrix (with the same m,n as A)
Moreover if rankA = r then

• σ1 ≥ σ2 ≥ . . . ≥ σn > 0
• σr+1 = σr+2 = . . . = σn = 0

The numbers σi are unique. They are called the singular values of A.

Σ is unique in general, but U and V are not.

Lemma

Let r = rankA.
Let λ1, λ2, . . . , λn be the eigenvalues of ATA, and order them such that λ1 ≥ λ2 ≥ . . . ≥ λn

Partition U into U1 (first r columns) and U2 (last n− r columns). Similarly, partition V into V1 and V2.

1. λi ∈ R and λi ≥ 0 for all i ∈ 1, 2, . . . , n
2. λr+1 = λr+2 = . . . = λn = 0
3. AV2 = 0
4. AV1V

T
1 = A

5. Let ui =
1
σi
Avi where vi is the i-th column of V1.

Then {u1, u2, . . . , un} is an orthonormal set in Rm.
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Theorem

The squares of the singular values of A are always equal to the eigenvalues of ATA.

Definition Left and right singular vectors

• The columns of U are eigenvectors of AAT . We call them left singular vectors of A.
• The columns of V are eigenvectors of ATA. We call them right singular vectors of A.

Theorem

Let r = rankA and

Σ1 =


σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σr


Then A = U1Σ1V

T
1 and AT = V1Σ1U

T
1 . We call this the reduced or compact SVD.

Theorem

1. ranA = ranU1

2. ranAT = ranV1

3. nullA = nullV T
1 = ranV 2

4. nullAT = nullUT
1 = ranU2

Theorem Generalized singular value decomposition

Let A ∈ Rm×n be a matrix of rank r.
There exist σ1 ≥ σ2 ≥ . . . ≥ σn > 0 and orthogonal U ∈ Rm×m and V ∈ Rn×n such that

A = U

[
Σ 0(n−r)×r

0r×(m−r) 0(n−r)×(m−r)

]
V T

where Σ is a diagonal matrix containing σ1, σ2, . . . , σr and 0m×n is the m× n zero matrix.
• If rankA = n, then the zero blocks on the right are absent.
• If rankA = m, then the zero blocks on the bottom are absent.
• If A is square and nonsingular, then all three zero blocks are absent.

Definition

∥M∥2 = sup
x∈Rn\0

∥Mx∥
∥x∥

Mk := {S ∈ Rm×n | rankS ≤ k} α(A,Mk) := inf{∥A−S∥2 | S ∈ Mk}

Theorem Best rank n approximation

Let A ∈ Rm×n and k < r = rankA. Let Mk := {S ∈ Rm×n | rankS ≤ k}
Let σ1 ≥ σ2 ≥ . . . ≥ σk ≥ σk+1 ≥ . . . ≥ σr > 0 be the nonzero singular values of A
Then α(A,Mk) = σk+1.
Let

A = U

[
Σ 0(n−r)×r

0r×(m−r) 0(n−r)×(m−r)

]
V T

where Σ is a diagonal matrix containing σ1, . . . , σk, σk+1, . . . , σr and 0m×n is the m× n zero matrix.
Then

X = U

[
Σ̃ 0(n−r)×r

0r×(m−r) 0(n−r)×(m−r)

]
V T

where Σ̃ is Σ with σk+1, . . . , σr replaced by zeroes.
This matrix X is the best approximation of A in Mk.
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