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1 Vector spaces

Definition Vector space |

Consider a field F of scalars and a set V with elements called vectors.
We define two operations on V:
o @:V xV =V Vector addition
e ©:F xV — V Scalar multiplication
V' is a vector space over F if and only if these axioms hold:
1. There exists an element 0 (the zero vector) in V such that 0 @ u = u for all u € V.
Vector addition is commutative: u@v=v S u
Vector addition is associative: u @ (v ® w) = (u D v) B w
For each u € V, there exists z € V (the additive inverse) such that u® 2z =0
ForalueV,10u=u
Foralla,beFandallueV,a® (bou) = (ab) Ou
ForallceFand all u,v €V, cO® (u®v) =(cOu) ® (cOv)
Foralla,beFandallueV, (a+b)Ou=(a0u)® (boOu)

e B o

Theorem I

Let V be a vector space and let v € V. Then,
1. The zero vector 0 is unique.
2.00u=0
3. The additive inverse z of u is unique.

4., —10u=z

Alternative notation:
additive inverse —u  zero vector 0  vector addition v+ v  scalar multiplication cu

Definition Subspace

Let V' be a vector space over F. U C V is a subspace of V' if
U is a vector space over F' with the same vector addition and scalar multiplication operations as V.

Only axioms 1 and 4 have to be checked to see if U is a subspace.

Theorem I

Let V be a vector space over F and U C V. Then U is a subspace of V' if and only if:
1. U is nonempty
2. u+wveU foral u,v e U
3.cueUforallce FandueU

1.1 Linear combinations

Definition Linear combination |

Let V be a vector space over F.
For given c¢1,c¢a,...,c0 € F and vy,vs...,v,. € V, we say that an expression of the form cyvy 4+ covg +
...+ cpv, is a linear combination of vy, vy ..., v,.

Definition Span |

The set of all linear combinations of vy, v, ..., v, € V is called the span of vy, vs,...,v,.
We denote it by span(vi,vs...,v,) = {c1v1 + cov2 + ...+ v | 1,620 . ¢ € F}

Theorem I

Let V be a vector space and vy, va, ...,v, € V. Then span(vy,vs,...,v,) is a subspace of V.

Definition Spanning set

We say that vy, vs,...,v, is a spanning set for V (or vy, ve,...,v, span V)
if every vector in V' can be written as a linear combination of vy, va, ..., v,.




Theorem I

1. If v1,v9,...,v,. span V and one of these vectors is a linear combination of the others,
then these 7 — 1 vectors span V.

2. One of the vectors vy, vs,...,v, is a linear combination of the others if and only if
there exist scalars ci,ca,...,c. € F, not all zero, such that c;vy + covs + ... + ¢, =0

Definition Linear dependence and independence

The vectors vy, ve, ..., v, are linearly dependent if there exist scalars ¢1,co,...,c. € F,
not all zero, such that civ; + cove + ... + ¢v,, = 0. Otherwise, they are linearly independent.

Theorem I

Let vy, v9,...,v, €V be vectors. Every vector in span(vy,vs, ..., v,) can be written uniquely
as a linear combination of vy, vs, ..., v, if and only if vy,vs, ..., v, are linearly independent.

1.2 Subspace operations

Theorem I

If U, W are subspaces of a vector space V, then U N W is a subspace of V.

This is not necessarily true for U U W.

Definition Sum of subspaces

The sum of two subspaces U and W of V is defined as U + W = {u+w |u € U and w € W}

Theorem I

If U, W are subspaces of a vector space V, then U + W is a subspace of V.

Definition Direct sum of subspaces

The sum of two subspaces U, W is called a direct sum if UNW =0

Every vector in a direct sum U + W can be uniquely expressed as a sum of u € U and w € W.

1.3 Bases

Definition Basis |

Let V be a vector space over F. The vectors vy, vs,...,v, form a basis of V if
1. v1,v9,...,v, are linearly independent
2. span(vy,vg,...,v,) =V

Bases are not unique.

Lemma Replacement lemma |

Let V be a nonzero vector space over F' and let r be a positive integer.

T
Suppose that uy,uz, ..., u, span V. Let v = > ¢;u; be a nonzero vector in V. Then,
i=1
1. ¢; #0 for some j € {1,2,...,7}.
2. If ¢; # 0 then v,u1, ..., uj—1,%j41...,u, span V.
3. If {ui,ug,...,u,} is a basis for V then {v,u1,...,uj—1,ujq1...,u,} is also a basis for V.

Theorem I

Let n and r be positive integers and let V' be a vector space over F'.

Let {v1,v9,...,v,} be a basis of V and let uy,us, ..., u, be linearly independent. Then,
1. r<n
2. If r = n, then {uy,ug,...,u,} is a basis of V.

Theorem |

If {v1,v2,...,v,} and {uy,us,...,u,} are bases of V, then n = r.




Definition Dimension |

Let V be a vector space and let n be a positive integer.

If {v1,v9,...,v,} is a basis of v, then n is the dimension of V.

If V = {0}, then V has dimension zero.

If V has dimension n for some n € N, then V is finite dimensional (notation: dimV = n)
Otherwise, V' is infinite dimensional.

If span(vy,va,...,v,) =V, then dimV < r
If V is finite dimensional, every set of linearly independent vectors in V' can be extended to a basis.
If V is finite dimensional and U is a subspace of V', then dimU < dim V.

The set of sequences in R is an example of an infinite-dimensional vector space.

Theorem Grassman’s formulal

dim(UNW) +dim(U + W) =dim U + dim W

1.4 Linear transformations

Definition Linear transformation |

Let V and W be vector spaces over the same field F.
A function T : V — W is called a linear transformation (a linear operator if V = W) if

T(au+ bv) = aT(u) + bT(v) Va,beF Yu,v eV

Let A € F"*™ and T(x) = Az. Then T is a linear transformation from F™ to F".

Derivatives and integrals are linear transformations.

Lemma |

Let V and W be vector spaces over F and let T : V' — W be a linear transformation. Then,
1. T(ew) =cT(v) forallce Fand v e V
2. T(0) =0 (the first 0 is in V, the second 0 is in W)
3. T(agvy + agva + ... + apvy) = a1 T(v1) + a2T(v2) + ... + anT(v,) Yo, €V Vap € F

Definition Kernel and range |

Let T : V — W be a linear transformation.
o The kernel of T is defined as ker T’ = {v € V| T'(v) = 0}
e The range of T is defined asranT ={w e W | eV st. T(v) =w}

Theorem I

The kernel of T is a subspace of V and the range of T is a subspace of W.

Any element of an n-dimensional vector space can be represented by the
E-coordinate vector {(cq,ca,...,c,) € F" by fixing an ordered basis E.

Definition E-basis representation |

Let E = (v1,va,...,0,) be an ordered basis of V.
For any u € V', write u = c1v; + cov2 + . .. 4+ ¢, v, Where ¢ € F.
The function [-]g : V — F", defined by [u]g = (c1,¢2,...,¢,) is called the E-basis representation.

Theorem I

[-]g : V — F™ is a linear transformation.




Theorem Isomorphism V and F" |

[-]E is a bijection between V' and F™.
We say that [-]g : V — F" is a (linear) isomorphism and V and F” are isomorphic.

Theorem Dimension theorem |

Let T : V — W be a linear transformation. Then dimker(T) + dimran(7") = dim V'

The range of a matrix is equal to the span of its columns.

Lemma |

Let T : V — W be a linear map. Then ker(T') = {0} if and only if T is injective.

Lemma |

Let T: V — W be a linear map with dimV = dim W < oco. Then T is injective <= T is surjective.

1.5 Matrix representations

Definition Matriz representation of a linear transformation |

Let V' be a n-dimensional vector space over F' with basis § and linear transformation .
Then the matrix representation with respect to 8 is the matrix 5[Ts
where each column is a vector of the basis with T applied to it.

1 0 0
1 0

Every n-dimensional vector space (mapped to F™) has the standard basis I I O
0 0 1

Definition Change of basis matrix |

The change of basis matrix from  to 7 is the n x n matrix g[I],
whose columns are the elements of 8 expressed in ~.

Theorem I

Let V be a finite dimensional vector space with bases 3,7 and linear transformation 7.
Let S =, [I]g. Then g[I], = S~! and [T], = S 3[T]s S~!

Definition Similarity |

Two matrices A and B are similar if and only if A = Q7' BQ for some Q.

2 Inner product spaces

Definition Inner product space over Rl

An inner product space over R is an R-vectorspace V' together with a map
VxV —=R: (v1,02) — (v1,v2)

This map satisfies the axioms of an inner product:
1. Linearity For any fixed vo, the map V. — R:v € V = (v, v9) is linear.
2. Symmetry (vy,ve) = (vg,v1) for all v1,v3 €V
3. Positivity (v,v) > 0 and if v #£ 0, (v,v) > 0




Definition Hermitian inner product space (Inner product space over C)

An inner product space over C is a C-vectorspace V' together with a map
VxV—=C: (’1}1,’02) — <’U1,’U2>

This map satisfies the following axioms:
1. Linearity For any fixed vq, the map V' — C:v € V - (v, v9) is linear.
The map is not necessarily linear if vy is fixed instead of wvs.
2. Symmetry (vy,vs) = (ve,v1) for all v1,v2 €V
3. Positivity (v,v) € R and if v # 0, (v,v) > 0

Notation: v; L vs means that v; and vy have inner product 0.

aq bl n
The standard inner product for C*is [ : [ - | I [ = Z a]@j
j=1

Qnp by

2.1 Norms

Definition Norm

Let V be an F-vectorspace.
A vector-space norm on V' is amap || - || : V — R where ||v|| is the norm of v € V.
This map has to satisfy the following conditions for all v € V:

1. Non-negativity ||v|| > 0

2. Positivity ||v]| =0 < v=0

3. Homogeneity ||Mv|| = |\ - ||v|| YA€F

4. Triangle inequality |v + w|| < |[v| + ||w]|

Theorem I

Let V' be an inner product space. Then we can define a norm as ||v]| = /(v,v)

Theorem Cauchy-Schwarz-Bunyakovsky inequality

[{v, w)| < ol - [|w]

2.2 Orthonormal vectors

Definition Orthogonal system |

An orthogonal system in a vector space V' is a set of n vectors vy,...,v, € V
such that (v;,v;) =0 if and only if i # j

Definition Orthonormal system |

An orthonormal system in a vector space V is a set of n vectors vy,...,v, € V
1 if and only if 4 = j

h that (07, ;) —
such that (v;, v;) {Oifandonlyifi;éj

Lemma |

The vectors in any orthogonal system form an independent set.

Definition Orthonormal basis

We call {v;}ic; €V an orthonormal basis iff {v;};c; is an orthonormal system that spans V.

Theorem I

Let {v; }ier be a basis of V. Take any vector v € V', which can be written uniquely as a;, v;, +...+a;,, v;,,
a; if j € {il,...,im}

Th SV =
en (v, v;) 0 otherwise.




Algorithm Gram-Schmidt process |

Let dimV < oco. Let vy, vs,...,v, be a basis of V.

. Tk
Define the vectors w1, ua, ..., u, recursively by vy = —— and up = ——
ko1 |[v1]] [kl
where z;, = v, — E (ujvg)u; for all k < n.
i=1
Then, {u1,us,...,u,} is an orthonormal basis of V.

2.3 Dual vector spaces

Definition Dual vector space |

L(V,W) is the set of linear maps from V to W.
Let V be an F-vectorspace. The dual vector space of V is denoted V* or L(V,TF).
The elements of V* are called functionals.

Let V, W be an F-vectorspace. Then L(V,W) is also an F-vectorspace.
If V =F", then V* = Ftxn,

Inner products of R-vectorspaces are functionals.

Theorem I

If V has dimV = n < oo, then V* 2 V (= means isomorphic)
Any basis for V yields such an isomorphism.

Theorem Riesz representation theorem |

If dim V' < oo, then the map V' — V* is bijective.

Definition Adjoint |

Let T € L(W,V). Then T* (or T%%) is a function such that ((T*(-),v € V))) = (-, T*(v))
T* is a linear map from V to W.

T™* is the conjugate transpose of T

Definition Self-adjoint |

A linear transformation is self-adjoint or Hermitian if 7* =T

2.4 Orthogonal complements

Definition Orthogonal complement

Let V be an inner product space and W C V. Then W+ :={v € V : (v,w) =0 Yw € W}

If W is a subspace of V, then W is a subspace of V.
Vinv ={o0}

Theorem I

If V is finite-dimensional, then (V+)+ = V. Otherwise, V C (V1)+.

Theorem I

If V is finite-dimensional and W C V, then dim W + dim W+ = dim V.

Theorem |

If U is a finite-dimensional subspace of V, then V is the direct sum of U and U~.




Definition Orthogonal projection

Let V C W. Every w € W can be written uniquely as v € V +v' € V+
where v is the orthogonal projection of w. (notation: P,w)

Theorem I

ker T = (image T*)*

Theorem Minimum norm solution |

Let V1, V5 be inner product spaces and T : V; — V5 F-linear.
Let b € V5. The set of solutions to T(z) =bis {x € V1 | T(z) =b} ={a+v|a € V1,v € ker(T)}
If we solve T o T*(x) = b, then T*(x) is the minimum norm solution to T'(z) = b.

Theorem I

If v1,...,v, is an orthonormal basis for U, then P, (v) = (v,v1)v1 + (v,v2)v2 + ... + (v, Vp) 0,

Theorem I

Let V be a finite-dimensional vectorspace. Let T be a linear operator. Then

T is an orthogonal projection <= T is idempotent and self-adjoint

Theorem I

Let U = span{uy, us,...,u,} be a finite-dimensional subspace of an inner product space V. Let v € V.
n
Then P,v = Y cju; where [c1 ¢z ... c"]T € F" is a solution to the normal equation:
j=1
(ur,ur)  (ui,u2) -+ (ui,un)| [ (v, u1)
(ug,ur) (uz,uz) -+ (uz,un)| |c2 (v, uz)
<unau1> <unau2> <unaun> Cn <Uaun>

Theorem Best approrimation theorem |

Let U be a finite-dimensional subspace of an inner product space V.
Then |jv — Pyv| < |lv —w| Yw € U with equality if and only if P,v = w

2.5 Definite matrices

Definition Definite matrix |

Define the inner product as the standard inner product in F". Let A € F" x n be a Hermitian matrix.
We say that A is:
positive semidefinite if (Az,z) >0 Vz € F"
positive definite if (Az,z) > 0 for all nonzero z € F"
negative semidefinite if (Az,2) <0 Vz € F"
negative definite if (Az,x) < 0 for all nonzero x € F”
5. indefinite if (Ax,x) takes both positive and negative values.
Notation: A>0,A>0,A<0,A<0

Ll

Theorem |

Let A € F” be a Hermitian matrix with eigenvalues A1, Ag, ..., A, € R We have that:
1. A>0ifand only if A; >0 Vie {1,2,...,n}

A>0ifand only if \; >0 Vie {1,2,...,n}

A<O0ifand only if \; <0 Vie {1,2,...,n}

A< 0ifand only if \; <0 Vie{1,2,...,n}

A is indefinite if and only if A; > 0 and A; < 0 for some ¢,j € {1,2,...,n}

Gl L




Lemma |

e A is positive semidefinite if and only if there exists a B € F"*" such that A = B*B
e A is positive definite if and only if there exists a nonsingular B such that A = B*B
e A0 «— —-A>0

o If A is positive semidefinite, then (Az,2) =0 = Az =0

e A>0 = detA>0

Definition Square root of a matriz |

If A= B2, then B is the square root of A.

Some matrices have many square roots. Not every matrix has a square root.

Theorem I

Let A € F™"*™ be positive semidefinite. Then A has a unique positive semidefinite square root.

Theorem Cholesky factorizatz’onl

Let F € F™"*™ be a positive semidefinite matrix.
There exists a lower triangular matrix L € F"*" with real nonnegative diagonal entries such that P = LL*

Lemma QR factorizationl

Let A € Fxm,
There exists a unitary @ and upper triangular R with real nonnegative diagonal entries such that A = QR

2.6 Singular value decomposition

Definition Rank deficient matriz |

Let a € R™*™ bhe a real matrix with m > n. A is called rank deficient if rank A < n.

Theorem Singular value decomposition (tall matrices)

Let A c R™*™ withm >n
There exist two orthogonal matrices U € R™*™ and V € R™*™ and real numbers o1 > 09 > ... >0, >0
such that A = UXVT, where

01 0 0
0 g2 0
N = . . .
0 0 On
_O -

and O is a (m — n) X n zero matrix (with the same m,n as A)
Moreover if rank A = r then

e 01 2>2092>...20,>0

® 041 =0p42=...=0,=0
The numbers o; are unique. They are called the singular values of A.

3 is unique in general, but U and V are not.

Lemma |

Let r = rank A.
Let A1, A, ..., A, be the eigenvalues of AT A, and order them such that A\ > Xy > ... > A,
Partition U into Uy (first r columns) and Uz (last n —r columns). Similarly, partition V into V; and V5.

1. ;e Rand \; >0forallie1,2,....,n

2. A?"-i—l :/\H_g:...:)\n:()

3. AV, =0

4. AVl = A

5. Let u; = %Avi where v; is the i-th column of V3.
Then {uy, Us, . .. ,Un} is an orthonormal set in R™.




Theorem I

The squares of the singular values of A are always equal to the eigenvalues of AT A.

Definition Left and right singular vectors

o The columns of U are eigenvectors of AAT. We call them left singular vectors of A.
e The columns of V are eigenvectors of AT A. We call them right singular vectors of A.

Theorem I

Let »r = rank A and

op 0 - 0
0 oy -~ 0
¥ = . }
0 0 - o

Then A = Uy 31 V{F and AT = V;%,U{. We call this the reduced or compact SVD.

Theorem I

1. ran A =ranU;

2. ran AT =ran'Vj

3. mull A = null V¥’ = ran V2
4. mull AT = null U] = ran U?

Theorem Generalized singular value decomposition

Let A € R™*™ be a matrix of rank r.
There exist 01 > 09 > ... > 0, > 0 and orthogonal U € R™*™ and V € R™*" such that

Y O¢n—
A=U |: (n—r)xr :| VT
Orx(mfr) O(nfr)x(mfr)

where ¥ is a diagonal matrix containing o1, 09, ...,0, and O0,,x, is the m X n zero matrix.
e If rank A = n, then the zero blocks on the right are absent.
e If rank A = m, then the zero blocks on the bottom are absent.
e If A is square and nonsingular, then all three zero blocks are absent.

Definition |

M
Ml = sup 12

My, .= {S € R™*" | rank S < k} a(A, M) :=inf{||A—S]2 | S € M}
z€R™\0 [|]]

Theorem Best rank n approrimation |

Let A € R™*™ and k < r =rank A. Let M, := {S € R™*" | rank S < k}
Let o1 > 09> ... > 0 > 01 > ... > 0, > 0 be the nonzero singular values of A
Then a(A, My) = 0j41.

Let )
A=U )y O(n—r)xr :| VT
_Orx(m—r) O(n—r)x(m—r)
where ¥ is a diagonal matrix containing oy, ...,0%, Ok+1,...,07 and O, x, is the m X n zero matrix.
Then _ ~
X=U b O(n—r)xr :| VT
_0T><(m—7") O(n—r)x(m—r)
where ¥ is ¥ with Ok+1, - --,0r replaced by zeroes.

This matrix X is the best approximation of A in Mj.
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